
Master’s Thesis in Informatics

Author: Michael Lohr, B.Sc

Supervisor: Prof. Michael Gerndt, Ph.D

Advisor: Anshul Jindal, M.Sc

Technical University of Munich

Munich, 2022-08-25

High-Level Cloud Architectures for

Platform-Independent Serverless Applications

Introduction

2Michael Lohr | High-Level Cloud Architectures for Serverless Applications

3Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Serverless Computing

Figure 1.1.: The architecture of a serverless cloud with the different abstraction layers [Jonas2019].

Motivation

4Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Multi-Cloud: Use multiple Cloud Service Provider (CSP) at the same time

-> Cloud Agnostic Application

Why? Vendor lock-in, backup (fault-tolerance)

However:

Every CSP has different APIs

Many different configuration parameters

Requires platform specific knowledge

Solutions [Toosi2014]:

➢ Standardized interfaces

• Implemented by the CSP

• Unlikely to happen (complicated, no vendor lock-in, costly, consensus) [Petcu2011]

➢ Service brokerage

• Additional layer between the cloud and cloud consumer that translates communication

➢ Programming libraries

5Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Cloud Interoperability

6Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Goal

Application

Interoperability

Solution

Figure 2.1.: The overall goal is to deploy some application on multiple cloud platforms.

Related Work

7Michael Lohr | High-Level Cloud Architectures for Serverless Applications

• Interoperable Infrastructure as Code (IaC)

• Modelling language [Brogi2014]

• specifies

• Cloud topology

• Management tasks

• Multi-platform [Lipton2018]

• Cross-technology [Lipton2018]

• Human & machine-readable [Lipton2018]

• YAML

• IaaS, PaaS, SaaS and Serverless (but only

simple services)

• Implemented by TOSCA orchestrators

8Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Topology and Orchestration Specification for Cloud Applications (TOSCA)

Figure 3.1.: The TOSCA v2 service template [TOSCA].

• Python Library that implements a platform-independent API wrapper for IaC [libcloud]

• Lowest-common denominator approach [DiMartino2015]

• High-level abstractions

• Platform-independent

• Currently supported: Cloud servers, block storage, object storage, CDNs, managed load

balancers, managed DNS services

• Similar: Apache jclouds for Java [DiMartino2015]

• Both approaches are limited to certain programming languages

9Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Apache Libcloud

Figure 3.2.: Creates DNS records using Apache Libcloud [libcloud].

• Problems with existing solutions

• Broker-based abstraction layer

• No high-level abstractions

• Requires extra servers to run software all the time

• IaC libraries to call different cloud platform APIs

• Programming knowledge

• Few serverless services supported

• Hard to customize/implement new resources

10Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Summary

Methodology

11Michael Lohr | High-Level Cloud Architectures for Serverless Applications

• Two problems:

1. Translate a generic architecture into platform-dependent architectures (-> Transpiler)

2. Use the CSP’s API to create those resources

− Abstract API: unified API

− Apache libcloud?

− Terraform!

• Terraform: open-source IaC tool

• Like Apache libcloud but supports more resources and does not require programming

• Chef, Puppet and SaltStack would require a master server or agent running

[Brikman2019]

12Michael Lohr | High-Level Cloud Architectures for Serverless Applications

The Terraform Layer

Figure 4.1.: The different abstraction layers.

1.

2.

• Real use case/not too abstract

• Only use serverless services

13Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Demo Application

Figure 4.2.: Screenshot of the frontend of the demo application. Figure 4.3.: The architecture graph of the example application, with

the arrows indicating the data flow.

• 3 different CSPs:

• Amazon Web Services (AWS)

• Microsoft Azure (Azure)

• Google Compute Cloud (GCP)

• Keep configurations as homogenous as

possible

• Use shared code/high-level abstracts

when possible

• E.g. OpenAPI for API definitions

• Javascript code

14Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Multicloud Terraform

Figure 4.4.: The architectures from a high-level perspective for

the different platforms.

15Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Contributions

• translates generic architectures to platform-
dependent configurations

Transpiler

software tool

• to deploy a demo application to multiple CSPs
Infrastructure as Code

(IaC) templates

• to define cloud architectures targeting multiple CSPs

• generic/platform-independent, high-level

Generic Architecture
Modeling Language

(GAML)

• to deploy the demo application to multiple CSPs
Configurations for the

transpiler

Transpiler

16Michael Lohr | High-Level Cloud Architectures for Serverless Applications

17Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Overview

Figure 5.1.: The inputs/outputs of the transpiler software tool.

• Requirements

• High-level

• Platform-independent (“cloud-agnostic”)

• Human & machine-readable

• Cover complete model of generic

architectures

• Inspiration: TOSCA, AWS CloudFormation

• -> YAML

• References?

• PyYAML supports custom tags like !ref

18Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Generic Architecture Modeling Language (GAML)

Figure 5.2.: An architecture definition using GAML.

19Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Template Library

Figure 5.3.: A component template definition.

Figure 5.4.: The Terraform Jinja2 template for an AWS S3 bucket.

Figure 5.5.: The Terraform Jinja2 if-statement.

20Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Transpilation Angorithm

Figure 5.6.: The transpilation process.

The Multy Approach

21Michael Lohr | High-Level Cloud Architectures for Serverless Applications

• https://github.com/multycloud/multy

• Small startup, started working in January

• Terraform Provider

• Uses gRCP to communicate with

Terraform

• Translation logic implemented in Go

• Encoder: Writes out HCL

• Currently only supports AWS, Azure and

GCP

• Only IaaS, some PaaS/Serverless that are

not too platform/specific

• No high-level abstractions

• But could be implemented

22Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Multi Cloud IaaS

Figure 6.1.: A VM deployed using Multy in Terraform HCL

https://github.com/multycloud/multy

Evaluation

23Michael Lohr | High-Level Cloud Architectures for Serverless Applications

24Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Demo Application

Figure 7.1.: The architecture of the demo application specified using GAML.

25Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Results

Figure 7.2.: The generated Terraform components.

• Transpiler input (total): 520 SLOC (GAML & template library)

• Transpiler output: 438 SLOC (HCL)

• GAML definition: 45 SLOC (with optional metadata section)

26Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Results contd.

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

1 5 10

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
e
c
o
n

d
s
)

Object-storage component instances

Figure 7.4.: The dependency graph generated by the ‘plot’ command.Figure 7.3.: Shows the time in seconds it took to transpile an

architecture containing n instances of an object-storage

component.

Future Work

27Michael Lohr | High-Level Cloud Architectures for Serverless Applications

➢ GAML

• Input variables (like TOSCA and Terraform)

• Modules (like Terraform)

• Platform-specific overrides

➢ Transpiler

• Use metadata to tag cloud resources

• Validate Terraform references in templates

• Automatically run Terraform validation

• Support TOSCA

➢ Wrap Terraform Command Line Interface (CLI)

➢ Collect and summarize Terraform outputs

➢ Web-based User Interface (UI) [similar to TOSCA]

28Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Improvements

Figure 8.1.: A GAML module prototype

Conclusion

29Michael Lohr | High-Level Cloud Architectures for Serverless Applications

• Goal: Solve the cloud platform interoperability problem and high-level serverless

architectures

• Our solution

• Made for serverless

• Based on the lowest common denominator approach

• No broker/Kubernetes nor “live” API translation

• Platform-independent architecture configuration using GAML (in YAML)

• Easy to extend with a custom template library

30Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Conclusion

• [Mell2011]: Mell, Peter; Grance, Timothy (Eds.): The NIST Definition of Cloud Computing. Recommendations of the
National Institute (800-145): National Institute of Standards and Technology.

• [Hong2019]: Hong, Jiangshui; Dreibholz, Thomas; Schenkel, Joseph Adam; Hu, Jiaxi Alessia (2019): An Overview of
Multi-cloud Computing. In Advances in Intelligent Systems and Computing 927, pp. 1055–1068. DOI: 10.1007/978-3-030-
15035-8_103.

• [Zhang2010]: Zhang, Qi; Cheng, Lu; Boutaba, Raouf (2010): Cloud computing: state-of-the-art and research challenges.
In J Internet Serv Appl 1 (1), pp. 7–18. DOI: 10.1007/S13174-010-0007-6.

• [Jonas2019]: Jonas, Eric; Schleier-Smith, Johann; Sreekanti, Vikram; Tsai, Chia-Che; Khandelwal, Anurag; Pu, Qifan et
al. (2019): Cloud Programming Simplified: A Berkeley View on Serverless Computing. DOI: 10.48550/arxiv.1902.03383.

• [Toosi2014]: Toosi, Adel Nadjaran; Calheiros, Rodrigo N.; Buyya, Rajkumar (2014): Interconnected Cloud Computing
Environments. In ACM Computing Surveys (CSUR) 47 (1), pp. 1–47. DOI: 10.1145/2593512.

• [Petcu2011]: Petcu, Dana (2011): Portability and Interoperability between Clouds: Challenges and Case Study. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 6994, pp. 62–74. DOI: 10.1007/978-3-642-24755-2_6.

• [Metsch2010]: Metsch, Thijs; Edmonds, Andy; Nyren, Ralf; Papaspyrou, A. (2010): Open cloud computing interface ‐
core. In: Open Grid Forum, OCCI-WG, Specification Document. Available at: http://forge. gridforum. org/sf/go/doc16161.
Citeseer.

• [Parak2014]: Parák, Boris; FLORIAN, FELDHAUS; PIOTR, KASPRZAK; MAIK, SRBA; Šustr, Zdeněk (2014): The rOCCI
Project - Providing Cloud Interoperability with OCCI 1.1. In: Proceedings of International Symposium on Grids and Clouds
(ISGC) 2014. Trieste: Proceedings of Science. Available online at
http://pos.sissa.it/archive/conferences/210/014/ISGC2014_014.pdf.

• [Brogi2014]: Brogi, Antonio; Soldani, Jacopo; Wang, PengWei (2014): TOSCA in a Nutshell: Promises and Perspectives.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 7908, pp. 171–186. DOI: 10.1007/978-3-662-44879-3_13.

• [TOSCA]: OASIS (2022): TOSCA Version 2.0 Specification. Available online at https://docs.oasis-
open.org/tosca/TOSCA/v2.0/csd04/TOSCA-v2.0-csd04.pdf, checked on 7/7/2022.

31Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Bibliography (1)

• [Lipton2018]: Lipton, Paul; Palma, Derek; Rutkowski, Matt; Tamburri, Damian Andrew (2018): TOSCA Solves Big

Problems in the Cloud and Beyond! In IEEE Cloud Computing. DOI: 10.1109/MCC.2018.111121612.

• [Pellegrini2018]: Pellegrini, Roland; Rottmann, Patrick; Strieder, Georg (2018): Preventing vendor lock-ins via an

interoperable multi-cloud deployment approach. In 2017 12th International Conference for Internet Technology and

Secured Transactions, ICITST 2017, pp. 382–387. DOI: 10.23919/ICITST.2017.8356428.

• [Baarzi2021]: Baarzi, Ataollah Fatahi; Kesidis, George; Joe-Wong, Carlee; Shahrad, Mohammad (2021): On Merits and

Viability of Multi-Cloud Serverless. In Proceedings of the ACM Symposium on Cloud Computing, pp. 600–608. DOI:

10.1145/3472883.3487002.

• [libcloud]: The Apache Software Foundation (2022): Apache Libcloud. Apache Libcloud is a standard Python library that

abstracts away differences among multiple cloud provider APIs. The Apache Software Foundation. Available online at

https://libcloud.apache.org/, checked on 7/24/2022.

• [DiMartino2015]: Di Martino, Beniamino; Cretella, Giuseppina; Esposito, Antonio (2015): Cloud Portability and

Interoperability. Issues and Current Trends: Springer, Cham. Available online at

https://link.springer.com/book/10.1007/978-3-319-13701-8.

• [DiMartino2011]: Di Martino, Beniamino; Petcu, Dana; Cossu, Roberto; Goncalves, Pedro; Máhr, Tamás; Loichate,

Miguel (2011): Building a Mosaic of Clouds. In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) 6586, pp. 571–578. DOI: 10.1007/978-3-642-21878-1_70.

• [Dandria2012]: Dandria, Francesco; Bocconi, Stefano; Cruz, Jesus Gorronogoitia; Ahtes, James; Zeginis, Dimitris (2012):

Cloud4SOA: Multi-cloud Application Management Across PaaS Offerings. In Proceedings - 14th International Symposium

on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2012, pp. 407–414. DOI:

10.1109/SYNASC.2012.65.

32Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Bibliography (2)

• [Brikman2019]: Brikman, Yevgeniy (2019): Terraform Up & Running. Writing Infrastructure as Code. Second edition.

Beijing China, Sebastopol, CA: O'Reilly Media.

• [HashiCorpHCL]: HashiCorp: Terraform Configuration Language. Available online at https://www.terraform.io/language,

checked on 7/7/2022.

33Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Bibliography (3)

34Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Thank you for your attention!

35Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Backup

36Michael Lohr | High-Level Cloud Architectures for Serverless Applications

GitHub

Serverless Webapp:

A web application

deployment using Terraform

for AWS, Azure, and GCP.

https://github.com/michidk/serverless-webapp/

Multiform:

A Multi-Cloud Templating

System

https://github.com/michidk/multiform

https://github.com/michidk/serverless-webapp/
https://github.com/michidk/multiform

“[…] a model for enabling convenient, on-

demand network access to a shared pool

of configurable computing resources (e.g.,

networks, servers, storage, applications,

and services) that can be rapidly

provisioned and released with minimal

management effort or service provider

interaction”

[Mell2011]

37Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Cloud Computing (CC)

Agility

Scalability

Elasticity

High availability

Fault Tolerance

Cost-Effectiveness

38Michael Lohr | High-Level Cloud Architectures for Serverless Applications

CC Service Models

Figure 1.1.: The different aspects the consumer has to manage when using traditional, IaaS, PaaS, SaaS offerings.

Figure taken from [Hong2019] based on [Zhang2010].

1. Find unified CSP interface

2. Build a demo cloud application

3. Implement the application for multiple cloud platforms

4. Analyze the differences and similarities to derive a high-level modelling language

5. -> Build the transpiler

39Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Overview

40Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Terraform HCL Example

Figure 4.1.: Terraform example that provisions an AWS EC2 instance and a GCP DNS

record pointing at that instance [Brikman2019].

Figure 4.2.: The structure of HCL blocks [HashiCorpHCL].

• RESTful protocol for cloud management

tasks

• No need to interact with platform-specific

APIs

• Manages deployment, autonomic scaling,

resource management [Metsch2010]

• IaaS, PaaS, SaaS

• No major CSP supports it

• Implemented by OCCI servers

• rOCCI as bridge between OCCI and

AWS [Parak2014]

41Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Open Cloud Computing Interface (OCCI)

Figure 3.1.: OCCI architecture with its different interoperability

levels [Metsch2010].

• Third-party entity that aggregates

serverless offerings [Baarzi2021]

• Currently only FaaS [Baarzi2021]

• Because serverless offerings are often

tightly coupled to other services on their

platform [Baarzi2021]

• Chooses optimal platform for a certain task

• Optimal in terms of

• Cost

• performance

42Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Virtual Serverless Provider (VSP)

Figure 3.3.: VSP high-level architecture [Baarzi2021].

• Offers [Dandria2012]

• Management of cloud applications in a homogenized way

• Similar to TOSCA

• Migration from already deployed applications

• Unified platform-independent monitoring

• Webinterface

• Semantic matchmaking to find the best offering

• Algorithm is able to detect similar concepts in different cloud platforms

• PaaS, Broker-based

• Similar to mOSAIC, but focus on PaaS

• Employs Service Oriented Architectures (SOA)

43Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Cloud4SOA

1. Use object-oriented programming: clean code, DRY

2. Document everything: according to standards/linters

3. Annotate the code with Python typings: to make it easier to use the code

44Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Source Code

Figure 5.9.: The Python dependencies.

Figure 5.10.: The source folder.

• Provides heterogenous cloud computing resources & prevents vendor lock-in

[DiMartino2011]

• IaaS/PaaS resources

• Broker-based approach

• Single interface through which multiple CSPs can be managed

• Basically, self-hosted PaaS systems providing access to cloud resources

• Find best CSP for a given task by comparing resources and SLA

• Two main components [DiMartino2015]:

• Semantic engine: platform-independent access to resources

• Discovery service: discovers CSPs’ resources and aligns them to the mOSAIC API

45Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Open-Source API and Platform for Multiple Clouds (mOSAIC)

• Abstraction layer using Docker & Kubernetes [Pellegrini2018]

• Docker: container runtime

• Kubernetes: container orchestration platform

• Only IaaS

46Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Kubernetes-based Abstraction Layer

47Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Transpilation

Figure 5.8.: The transpilation process.

48Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Template Library Overview

Figure 5.3.: The file tree of a demo app’s template directory.

Figure 5.4.: The template root YAML file.

49Michael Lohr | High-Level Cloud Architectures for Serverless Applications

Schemas

Figure 5.11.: The schemas used to validate the YAML files.

